WHITE PAPER

Which Quality
of Service (QoS)
is right for 110T?

by Andrew Thomas

Cogent
DataHub

Key takeaways

1. Message loss at MQTT QoS level 0 is
unacceptable for lloT, and levels 1 and 2
can produce long queues that can lead
to catastrophic failures when data point
values change quickly.

2. The choice of QoS level drives difficult
compromises regarding performance
and message order.

3. QoS levels 1 and 2 don't propagate
well past the MQTT broker. The QoS
promise cannot necessarily be kept
among multiple clients.

4. Consistency of data can and must

be guaranteed by managing message
queues for each point, preserving event
order, and notifying clients of data
quality changes.

SKKYNET o Skkynet Cloud Systems, Inc. * 2233 Argentia Road, Suite 302 « Mississauga, ON L5N 2X7 « +1.905.702.7851

DATA QUALITY

The three Quality of Service levels (QoS) offered by MQTT may have
been adequate for the original design goals, which was a one-hop
connection for remote devices to a central location. But they do
not adequately serve the needs of Industrial loT. A higher standard
is necessary for lloT backbone and other applications: guaranteed
consistency of data.

Introduction

Quiality of Service (QoS) is a general term to indicate the delivery contract from a
sender to a receiver. In some applications QoS talks about delivery time, reliability,
latency or throughput. In lloT, QoS generally refers to the reliability of delivery.

MQTT, a popular lloT protocol offers three QoS levels. However, none of these
is adequate for a robust lloT backbone protocol. Instead, we suggest a more
stringent yet more flexible standard, something altogether different—guaranteed
consistency of data.

Let me explain. Here are the three Quality of Service levels that MQTT offers:

* Level 0 - At most once. Every message will be sent out on a best-effort basis. If a
message is lost in transit for whatever reason, it is abandoned—the receiver never
receives it, and the sender does not know that it was lost.

* Level 1 - At least once. Every message will be delivered to a receiver, though
sometimes the same message will be delivered two or more times. The sender
flags the message as a possible duplicate, placing the burden of distinguishing
duplicates on the receiver. The sender is not certain whether the receiver received
multiple copies of the message.

+ info@skkynet.com 1




A

* Level 2 - Exactly once. Every message will be delivered
exactly once to the receiver, and the sender will be aware
that it was received.

Quality of Service (QoS)

QoS0

At most once.

Fire & forget.
Lost messages
are abandoned.

QoS 1

At least once.

PUBACK

One or more
deliveries

QoS level 0 is unreliable. It is fine to lose a frame of a
video once in a while, but not fine to lose a control signal
that safely shuts down a stamping machine. If the sender is
transmitting data more quickly than the receiver can handle
it, there will come a point where in-flight messages will fill the
available queue positions. At that point the broker must do
one of three things: delete an old message to create queue
space, delete the new message, or refuse to accept the new
message. Since MQTT brokers do not interpret message
payloads, none of these can ensure that an important
value is not lost. If the broker refuses the message, the
sender now has a responsibility for further queueing, in the
expectation that queue space in the broker will be available
later. The sender is now faced with the identical queuing
problem - what happens when its queue is full? The client
might have more information to intelligently discard data,
but not always. For example, if the broker is the sender, it
has no option but to delete a message. Systems that use
QoS 0 have to hope that queues do not fill.

QoS level 1 seems pretty reasonable at first glance.
Message duplication is not a problem in most cases, and
where there is an issue the duplicates can be identified
by the receiver and eliminated, assuming the receiver
maintains enough history to be able to identify them.

However, problems arise when the sender is transmitting
data more quickly than the receiver can process it. Since
there is a delivery guarantee at QoS 1, the sender must
be able to queue an infinite number of packets waiting
for an opportunity to deliver them. Since memory is finite,

SKKYNET o Skkynet Cloud Systems, Inc. * 2233 Argentia Road, Suite 302 « Mississauga, ON L5N 2X7 « +1.905.702.7851

WHICH QUALITY OF SERVICE (QoS) IS RIGHT FOR IloT? | WHITE PAPER

All three of these QoS levels lack something critical for most
industrial systems, which | will discuss below. But let's look
at each one individually first.

QoS 2

Exactly once.

PUBREC

Received

PUBREL

Released

PUBCOMP

Complete

No duplicates,
sender is notified

this means that queues must overflow to disk. This hugely
reduces performance, making queue exhaustion even more
likely. You might say that queues do not need to be infinite,
just large. But then what happens when that large queue
fills? Delete the oldest message or newest message, or just
refuse the message completely? That is effectively QoS 0.

Longer queues mean longer latencies. For example, if |
turn a light on and off rapidly three times, and the delivery
latency is 5 seconds simply due to the queue volume, then it
will take 30 seconds for the receiver to see that the light has
settled into its final state. In the meantime the client will be
acting on false information. In the case of a light, this may
not matter much (unless it is a visual alarm), but in industrial
systems timeliness matters. The problem becomes even
more severe if the client is aggregating data from multiple
sources. If some sources are delayed by seconds or minutes
relative to other, then the client will be performing logic on
data values that are not only inconsistent with reality but
also with each other.

Ultimately, QoS 1 cannot be used where any client
could produce data faster than the slowest leg of the
communication path can handle. Beyond a certain data
rate, the system will effectively “fall off a cliff” and become
unusable. I've personally seen this exact thing happen in
a municipal waste treatment facility. It wasn't pretty. The
solution was to completely replace the communication
mechanism.

QoS level 2 is similar to QoS 1, but more severe. QoS 2
is designed for transactional systems, where every message

+ info@skkynet.com 2



A

matters, and duplication is equivalent to failure. For
example, a system that manages invoices and payments
would not want to record a payment twice or emit multiple
invoices for a single sale. In that case, latency matters far
less than guaranteed unique delivery.

Since QoS level 2 requires more communication to provide
its guarantee, it requires more time to deliver each message.
It will exhibit the same problems under load as QoS level 1,
but at a lower data rate. That is, the maximum sustained
data rate for QoS 2 will be lower than for QoS 1. The “cliff”
just happens sooner.

Maximum message rates, pipelining and
message order

QoS 1 and 2 both require acknowledgements as part of their
data transmission. That means that every message must
wait for an acknowledgement before the next message can
be transmitted. QoS 1 requires one network packet from
client to broker, and one packet from broker to client. QoS
2 requires double that. This synchronization across the
network makes the overall message rate highly dependent
on network latency. For example, if the client is in Greece
and the broker is in the US, the ping time is about 125ms.
That means that QoS 1 would require 125ms per message.
QoS 2 would require 250ms. In the worst-case scenario
where all messages are on a single topic, QoS 1 could send
at most 8 messages per second. QoS 2 would cap out at 4
messages per second.

By comparison, QoS 0 requires no acknowledgement
beyond what is inherent in TCP, which is highly optimized.
That makes it possible to pipeline messages using QoS 0,
writing one after another without delay. The maximum
messages rate depends on network bandwidth, not latency.

Device A @

MQTT

broker

WHICH QUALITY OF SERVICE (QoS) IS RIGHT FOR IloT? | WHITE PAPER

MQTT does not guarantee message delivery order for
messages on different topics. QoS 1 and 2 will perform
better if transmissions and acknowledgements for different
topics are interleaved. In fact, without that they would
be too slow to be useful outside a LAN. However, when
transmissions are interleaved message order becomes
unpredictable. MQTT does guarantee message order for
multiple messages on the same topic. Consequently, there
is a worst-case scenario for QoS 1 and 2 where all messages
are sent to a small number of topics, making network
latency the rate-limiting factor.

In effect, users must choose among performance, delivery
promises and reliable message ordering. In most cases the
user is unaware that the choice is even being made.

QoS Levels 1 and 2 Don't Propagate Well

All QoS levels, most importantly level 1 and level 2, suffer
from another big flaw - they don't propagate reliably.

Consider a trivial system where two clients, A and B, are
connected to a single broker. The goal is to ensure that
B remains up to date with what A transmits. Suppose
A sends its message with QoS 2. That ensures that the
messages reach the broker. However, B needs data from
many senders, so it subscribes using QoS 0 for speed. The
net result is that B receives messages from the broker at
QoS 0, even though A sent them at QoS 2. Any dropped
message at QoS 0 would result in B being inconsistent with
A. Obviously, B could subscribe to topics from A at QoS 2 to
resolve this, but thatimplies that B knows more information
about A than it should. A major goal of MQTT is to decouple
senders and receivers. Obliging receivers to have intimate
knowledge about senders violates that goal.

@ Device B

L wso

SKKYNET o Skkynet Cloud Systems, Inc. * 2233 Argentia Road, Suite 302 « Mississauga, ON L5N 2X7 « +1.905.702.7851

+ info@skkynet.com 3



A

Since QoS 0 does not guarantee delivery, the message from
A is not guaranteed to arrive at B. If that message would
have updated a value in an HMI, for example, then that
HMI will remain inconsistent with the source until a new
value is transmitted. That is misleading in an HMI. It can be
catastrophic in closed-loop control.

It gets even more complicated. As we have seen, QoS
1 and 2 can result in lengthy queues, which introduce
delivery latency. One colloquial definition of “real time” is
“a late answer is a wrong answer”. The definition of “late” is

/

2

SCADA

@@
(3 A3

Devices or HMI

Guaranteed Consistency

None of these QoS levels is really right for lloT. We need
something else, and that is guaranteed consistency. In a
typical industrial system there are analog data points that
move continuously, like flows, temperatures and levels.
A client application would like to see as much detail as it
can, but most critical is the current value of these points.
If it misses a value that is already superseded by a new
measurement, that is not generally a problem. However,
the client cannot accept missing the most recent value for
a point. For example, if | flick a light on and off 3 times,
the client may not need to know how many times | did it,
but it absolutely must know that the switch ended in the
off position. The communication path needs to guarantee
that the final “off” message gets through, even if some
intermediate states are lost. This is the critical insight in

SKKYNET o Skkynet Cloud Systems, Inc. * 2233 Argentia Road, Suite 302 «

898
ﬁ ) ) ggg

Mississauga, ON L5N 2X7 «

WHICH QUALITY OF SERVICE (QoS) IS RIGHT FOR IloT? | WHITE PAPER

application-dependent, but most control systems have one.
In our trivial example, which QoS will reliably keep B up to
date with A? The answer is: none of them.

In many networking scenarios, it is desirable to create
a multi-server backbone, where brokers are connected
to one another in a daisy-chain. Messages are passed
between brokers, allowing clients in different networks
to communicate with one another. This adds an extra
opportunity for QoS mismatches, latency, ordering and
performance issues to come into play.

g

Cloud

2.0

Suppliers &
customers

lloT. The client is mainly interested in the current state of
the system, not in every transient state that led up to it.

Guaranteed consistency for QoS is actually slightly more
complex than that. There are really four critical aspects that
are too often ignored:

1. The server must know what it is managing. MQTT
brokers explicitly have no knowledge of the message
contents. They do not know, for example, whether 3
sequential messages pertain to a single light switch, 3
different light switches, or something altogether different.
They only know whether the messages are on the same
topic. So long as the broker has no insight into the meaning
of the messages, is cannot reliably know which messages
constitute superseded values and can be safely discarded.
Relying only on queue position or message age, typical
heuristics for discarding stale messages, will fail.

+1.905.702.7851 * info@skkynet.com 4



A

2. Message queues must be managed for each data
point and client. When communication is slow, old
messages must be dropped from the queue in favor of new
messages to avoid ever-lengthening latencies. This queuing
must occur on a per-point, per-client basis. Only messages
that are superseded for a specific point destined for a
specific client can be dropped. If we drop messages blindly
then we risk dropping the most recent message value for a
point, as in the final switch status above. MQTT messages
routinely contain values for multiple points. In that case, no
message is safe to discard and we are back to the infinite
queuing problem.

3. Event order must be preserved. When a new value
for a point enters the queue, it goes to the back of the
queue even if it supersedes a message near the front of
the queue. If we don't do this, the client could see the light
turn on before the switch is thrown. The relative order in

4 4

© - d«-»

SCADA

Device DMZ

For those instances where it is critical to see every change in
a process (that is, where QoS 1 or 2 is required), that critical
information should be handled as close as possible to the
data source, whether it's a PLC or an embedded device.
That is, time-critical and event-critical information should
be processed at its source, not transmitted via the network
to a remote system for processing where that transmission
could introduce latency or drop intermediate values. This
topic of edge processing deserves its own white paper.

SKKYNET o Skkynet Cloud Systems, Inc. * 2233 Argentia Road, Suite 302 « Mississauga, ON L5N 2X7 « +1.905.702.7851

WHICH QUALITY OF SERVICE (QoS) IS RIGHT FOR IloT? | WHITE PAPER

which events occur in control systems is often critical for
correct control and fault identification. Ultimately the client
needs to maintain a consistent view of the data as that data
changes.

4. The client must be notified when a value is no
longer current. For the client to trust its data, it must know
when data consistency is no longer being maintained. If a
data source is disconnected for any reason, its data will no
longer be updated in the client. The physical world will move
on, and the client will not be informed. Although the data
delivery mechanism cannot stop hardware from breaking,
it can guarantee that the client knows that something
is broken. The client must be informed, on a per-point
basis, whether the point is currently active and valid or
inaccessible and thus invalid. In the industrial world this is
commonly done using data quality, a per-point indication of
the trustworthiness of each data value.

4

600 — —
000
00O O ﬂl
IT Cloud Suppliers &
customers

For the lloT, the beauty of guaranteed consistency for QoS
is that it can respond to changes in network conditions
without slowing down, backing up, or invalidating the
client's view of the system state. It has a bounded queue
size and is thus suitable for resilient embedded systems.
This quality of service can propagate through any number
of intermediate brokers and still maintain its guarantee, as
well as notify the client when any link in the chain is broken.

+ info@skkynet.com 5



A

Can't MQTT guarantee consistency?

Seeing that guaranteed consistency has these advantages,
is there any way to achieve it within the MQTT specification?
At first glance, certain MQTT features suggest it could
guarantee consistency of data across multiple connections,
but a closer look at each of these shows it's not really
possible.

* A retained messages flag delivers the last message on
a topic to any new subscriber, which could in theory help
ensure data consistency. But the retained message may
not provide the latest values for all the underlying data
points, particularly when a single payload can carry values
for multiple points. Furthermore, the flag has no effect on
messages that are dropped due to full queues or lost QoS
0 messages.

* The Last Will and Testament (LWT) message gets
published automatically if a client drops. It seems this could
be used to notify other clients that its data is now stale or
invalid. Unfortunately, although this single message can
inform a receiver that a source has failed, the receiver must
know which data points are associated with that source,
and also that each data point has only a single source.
Encoding this kind of source knowledge into a receiving
client is impractical to implement and violates the intent of
decoupling in MQTT.

¢ Persistent sessions in QoS 1 and 2 ensure that a
disconnected client will receive queued messages when
it reconnects. This should be able to prevent data loss
during temporary network outages. However, the MQTT
specification allows for these sessions to time out after a
while. Any client disconnection that exceeds the timeout
will not recover data for that period. No client can rely on a
persistent session surviving a disconnection and so must be
prepared for any session to start from a “clean” state.

What about Sparkplug?

Sparkplug would probably be the most logical candidate
for building guaranteed consistency into MQTT. This
specification adds payload definition, topic hierarchy
definition, source knowledge and lifetime information on
top of MQTT. However, it is built on top of MQTT, and the
limitations of MQTT still apply.

One issue is that in Sparkplug, missed messages can only
be mitigated by a disconnect/reconnect cycle, where a
client sends a BIRTH message to broadcast its presence
and all current values. This approach breaks down on even
a modest-sized implementation, where a system restart or

SKKYNET o Skkynet Cloud Systems, Inc. * 2233 Argentia Road, Suite 302 « Mississauga, ON L5N 2X7 « +1.905.702.7851

WHICH QUALITY OF SERVICE (QoS) IS RIGHT FOR IloT? | WHITE PAPER

network failure recovery can result in “birth storms” when
all clients reconnect at once. These messages can saturate
other clients, causing them to disconnect and re-emit BIRTH
messages, triggering an endless cycle that can only be
corrected by shutting down some of the clients and then
restarting them manually over time.

Sparkpluginherits other problems from MQTT. All Sparkplug
messages are sent at QoS 0, for good technical reasons. Full
queues can only be handled by reconnections. Message
order is important and not guaranteed, forcing clients to
manage message re-ordering. That is something that TCP/
IP solved 50 years ago.

These limitations of the protocol have become more evident
as use of MQTT in lloT expands far beyond its original
design goals. To be realistic, along with the strengths of
MQTT we need to understand its drawbacks. It can still
play a key role in Industrial 10T edge scenarios, despite the
limitations of QoS. But we cannot recommend MQTT as a
backbone protocol for lloT implementations of any size or
complexity. It is good at event-driven telemetry transport,
but was not designed for systems that require guaranteed
state consistency.

So there’s the answer. For lloT, you don't want QoS 0. And
once you understand the limitations and failure modes of
QoS 1 or 2, you probably cannot accept either of them for
more than single-hop connections. Beyond that you really
need something more—guaranteed consistency. Although
Skkynet software and services do support all QoS levels for
MQTT, they also provide guaranteed consistency via other
protocols to meet the highest possible standards for lloT
backbone applications.

About Skkynet

Skkynetis agloballeader in real-time software and services
that allow companies to securely acquire, monitor,
control, visualize, network and consolidate live process
data in-plant or in the cloud. DataHub™, and DataHub™
for Azure, enable secure, real-time data connectivity for
industrial automation, Industrial loT, and Industrie 4.0.

Visit skkynet.com for more about the company and
cogentdatahub.com for more about Cogent DataHub.

Skkynet™, DataHub™, Cogent DataHub™, the Skkynet and DataHub logos
are either registered trademarks or trademarks used under license by the
Skkynet group of companies (“Skkynet”) in the USA and elsewhere. All other
trademarks, service marks, trade names, product names and logos are the
property of their respective owners.

+ info@skkynet.com 6



